Copied to
clipboard

?

G = C42.122D10order 320 = 26·5

122nd non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.122D10, C10.72- (1+4), (C4×Q8)⋊5D5, (Q8×C20)⋊5C2, C4⋊C4.291D10, D10⋊Q810C2, (C4×Dic10)⋊36C2, Dic5⋊Q89C2, C4.18(C4○D20), C42⋊D533C2, C422D517C2, (C2×Q8).176D10, Dic53Q817C2, D208C4.10C2, C20.116(C4○D4), (C2×C20).621C23, (C2×C10).112C24, (C4×C20).238C22, C4.D20.12C2, C20.23D4.9C2, Dic5.37(C4○D4), (C2×D20).146C22, C4⋊Dic5.303C22, (Q8×C10).212C22, (C4×Dic5).89C22, (C22×D5).44C23, C22.137(C23×D5), D10⋊C4.68C22, C53(C22.50C24), (C2×Dic5).221C23, C10.D4.68C22, C2.10(Q8.10D10), (C2×Dic10).153C22, C2.27(D5×C4○D4), C4⋊C4⋊D510C2, C2.60(C2×C4○D20), C10.53(C2×C4○D4), (C2×C4×D5).257C22, (C5×C4⋊C4).340C22, (C2×C4).653(C22×D5), SmallGroup(320,1240)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.122D10
C1C5C10C2×C10C2×Dic5C2×C4×D5C42⋊D5 — C42.122D10
C5C2×C10 — C42.122D10

Subgroups: 694 in 212 conjugacy classes, 97 normal (43 characteristic)
C1, C2 [×3], C2 [×2], C4 [×2], C4 [×13], C22, C22 [×6], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×10], D4 [×2], Q8 [×6], C23 [×2], D5 [×2], C10 [×3], C42, C42 [×2], C42 [×4], C22⋊C4 [×10], C4⋊C4, C4⋊C4 [×2], C4⋊C4 [×9], C22×C4 [×2], C2×D4, C2×Q8, C2×Q8 [×2], Dic5 [×2], Dic5 [×5], C20 [×2], C20 [×6], D10 [×6], C2×C10, C42⋊C2 [×2], C4×D4, C4×Q8, C4×Q8 [×2], C22⋊Q8 [×2], C4.4D4 [×2], C422C2 [×4], C4⋊Q8, Dic10 [×4], C4×D5 [×4], D20 [×2], C2×Dic5 [×4], C2×Dic5 [×2], C2×C20 [×3], C2×C20 [×4], C5×Q8 [×2], C22×D5 [×2], C22.50C24, C4×Dic5 [×2], C4×Dic5 [×2], C10.D4 [×2], C10.D4 [×6], C4⋊Dic5, D10⋊C4 [×10], C4×C20, C4×C20 [×2], C5×C4⋊C4, C5×C4⋊C4 [×2], C2×Dic10 [×2], C2×C4×D5 [×2], C2×D20, Q8×C10, C4×Dic10, C42⋊D5 [×2], C4.D20, C422D5 [×2], Dic53Q8, D208C4, D10⋊Q8 [×2], C4⋊C4⋊D5 [×2], Dic5⋊Q8, C20.23D4, Q8×C20, C42.122D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2- (1+4), C22×D5 [×7], C22.50C24, C4○D20 [×2], C23×D5, C2×C4○D20, Q8.10D10, D5×C4○D4, C42.122D10

Generators and relations
 G = < a,b,c,d | a4=b4=d2=1, c10=b2, ab=ba, ac=ca, dad=ab2, cbc-1=dbd=a2b-1, dcd=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 71 50 158)(2 72 51 159)(3 73 52 160)(4 74 53 141)(5 75 54 142)(6 76 55 143)(7 77 56 144)(8 78 57 145)(9 79 58 146)(10 80 59 147)(11 61 60 148)(12 62 41 149)(13 63 42 150)(14 64 43 151)(15 65 44 152)(16 66 45 153)(17 67 46 154)(18 68 47 155)(19 69 48 156)(20 70 49 157)(21 137 112 81)(22 138 113 82)(23 139 114 83)(24 140 115 84)(25 121 116 85)(26 122 117 86)(27 123 118 87)(28 124 119 88)(29 125 120 89)(30 126 101 90)(31 127 102 91)(32 128 103 92)(33 129 104 93)(34 130 105 94)(35 131 106 95)(36 132 107 96)(37 133 108 97)(38 134 109 98)(39 135 110 99)(40 136 111 100)
(1 37 11 27)(2 119 12 109)(3 39 13 29)(4 101 14 111)(5 21 15 31)(6 103 16 113)(7 23 17 33)(8 105 18 115)(9 25 19 35)(10 107 20 117)(22 55 32 45)(24 57 34 47)(26 59 36 49)(28 41 38 51)(30 43 40 53)(42 120 52 110)(44 102 54 112)(46 104 56 114)(48 106 58 116)(50 108 60 118)(61 123 71 133)(62 98 72 88)(63 125 73 135)(64 100 74 90)(65 127 75 137)(66 82 76 92)(67 129 77 139)(68 84 78 94)(69 131 79 121)(70 86 80 96)(81 152 91 142)(83 154 93 144)(85 156 95 146)(87 158 97 148)(89 160 99 150)(122 147 132 157)(124 149 134 159)(126 151 136 141)(128 153 138 143)(130 155 140 145)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 36)(2 25)(3 34)(4 23)(5 32)(6 21)(7 30)(8 39)(9 28)(10 37)(11 26)(12 35)(13 24)(14 33)(15 22)(16 31)(17 40)(18 29)(19 38)(20 27)(41 106)(42 115)(43 104)(44 113)(45 102)(46 111)(47 120)(48 109)(49 118)(50 107)(51 116)(52 105)(53 114)(54 103)(55 112)(56 101)(57 110)(58 119)(59 108)(60 117)(61 132)(62 121)(63 130)(64 139)(65 128)(66 137)(67 126)(68 135)(69 124)(70 133)(71 122)(72 131)(73 140)(74 129)(75 138)(76 127)(77 136)(78 125)(79 134)(80 123)(81 153)(82 142)(83 151)(84 160)(85 149)(86 158)(87 147)(88 156)(89 145)(90 154)(91 143)(92 152)(93 141)(94 150)(95 159)(96 148)(97 157)(98 146)(99 155)(100 144)

G:=sub<Sym(160)| (1,71,50,158)(2,72,51,159)(3,73,52,160)(4,74,53,141)(5,75,54,142)(6,76,55,143)(7,77,56,144)(8,78,57,145)(9,79,58,146)(10,80,59,147)(11,61,60,148)(12,62,41,149)(13,63,42,150)(14,64,43,151)(15,65,44,152)(16,66,45,153)(17,67,46,154)(18,68,47,155)(19,69,48,156)(20,70,49,157)(21,137,112,81)(22,138,113,82)(23,139,114,83)(24,140,115,84)(25,121,116,85)(26,122,117,86)(27,123,118,87)(28,124,119,88)(29,125,120,89)(30,126,101,90)(31,127,102,91)(32,128,103,92)(33,129,104,93)(34,130,105,94)(35,131,106,95)(36,132,107,96)(37,133,108,97)(38,134,109,98)(39,135,110,99)(40,136,111,100), (1,37,11,27)(2,119,12,109)(3,39,13,29)(4,101,14,111)(5,21,15,31)(6,103,16,113)(7,23,17,33)(8,105,18,115)(9,25,19,35)(10,107,20,117)(22,55,32,45)(24,57,34,47)(26,59,36,49)(28,41,38,51)(30,43,40,53)(42,120,52,110)(44,102,54,112)(46,104,56,114)(48,106,58,116)(50,108,60,118)(61,123,71,133)(62,98,72,88)(63,125,73,135)(64,100,74,90)(65,127,75,137)(66,82,76,92)(67,129,77,139)(68,84,78,94)(69,131,79,121)(70,86,80,96)(81,152,91,142)(83,154,93,144)(85,156,95,146)(87,158,97,148)(89,160,99,150)(122,147,132,157)(124,149,134,159)(126,151,136,141)(128,153,138,143)(130,155,140,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,36)(2,25)(3,34)(4,23)(5,32)(6,21)(7,30)(8,39)(9,28)(10,37)(11,26)(12,35)(13,24)(14,33)(15,22)(16,31)(17,40)(18,29)(19,38)(20,27)(41,106)(42,115)(43,104)(44,113)(45,102)(46,111)(47,120)(48,109)(49,118)(50,107)(51,116)(52,105)(53,114)(54,103)(55,112)(56,101)(57,110)(58,119)(59,108)(60,117)(61,132)(62,121)(63,130)(64,139)(65,128)(66,137)(67,126)(68,135)(69,124)(70,133)(71,122)(72,131)(73,140)(74,129)(75,138)(76,127)(77,136)(78,125)(79,134)(80,123)(81,153)(82,142)(83,151)(84,160)(85,149)(86,158)(87,147)(88,156)(89,145)(90,154)(91,143)(92,152)(93,141)(94,150)(95,159)(96,148)(97,157)(98,146)(99,155)(100,144)>;

G:=Group( (1,71,50,158)(2,72,51,159)(3,73,52,160)(4,74,53,141)(5,75,54,142)(6,76,55,143)(7,77,56,144)(8,78,57,145)(9,79,58,146)(10,80,59,147)(11,61,60,148)(12,62,41,149)(13,63,42,150)(14,64,43,151)(15,65,44,152)(16,66,45,153)(17,67,46,154)(18,68,47,155)(19,69,48,156)(20,70,49,157)(21,137,112,81)(22,138,113,82)(23,139,114,83)(24,140,115,84)(25,121,116,85)(26,122,117,86)(27,123,118,87)(28,124,119,88)(29,125,120,89)(30,126,101,90)(31,127,102,91)(32,128,103,92)(33,129,104,93)(34,130,105,94)(35,131,106,95)(36,132,107,96)(37,133,108,97)(38,134,109,98)(39,135,110,99)(40,136,111,100), (1,37,11,27)(2,119,12,109)(3,39,13,29)(4,101,14,111)(5,21,15,31)(6,103,16,113)(7,23,17,33)(8,105,18,115)(9,25,19,35)(10,107,20,117)(22,55,32,45)(24,57,34,47)(26,59,36,49)(28,41,38,51)(30,43,40,53)(42,120,52,110)(44,102,54,112)(46,104,56,114)(48,106,58,116)(50,108,60,118)(61,123,71,133)(62,98,72,88)(63,125,73,135)(64,100,74,90)(65,127,75,137)(66,82,76,92)(67,129,77,139)(68,84,78,94)(69,131,79,121)(70,86,80,96)(81,152,91,142)(83,154,93,144)(85,156,95,146)(87,158,97,148)(89,160,99,150)(122,147,132,157)(124,149,134,159)(126,151,136,141)(128,153,138,143)(130,155,140,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,36)(2,25)(3,34)(4,23)(5,32)(6,21)(7,30)(8,39)(9,28)(10,37)(11,26)(12,35)(13,24)(14,33)(15,22)(16,31)(17,40)(18,29)(19,38)(20,27)(41,106)(42,115)(43,104)(44,113)(45,102)(46,111)(47,120)(48,109)(49,118)(50,107)(51,116)(52,105)(53,114)(54,103)(55,112)(56,101)(57,110)(58,119)(59,108)(60,117)(61,132)(62,121)(63,130)(64,139)(65,128)(66,137)(67,126)(68,135)(69,124)(70,133)(71,122)(72,131)(73,140)(74,129)(75,138)(76,127)(77,136)(78,125)(79,134)(80,123)(81,153)(82,142)(83,151)(84,160)(85,149)(86,158)(87,147)(88,156)(89,145)(90,154)(91,143)(92,152)(93,141)(94,150)(95,159)(96,148)(97,157)(98,146)(99,155)(100,144) );

G=PermutationGroup([(1,71,50,158),(2,72,51,159),(3,73,52,160),(4,74,53,141),(5,75,54,142),(6,76,55,143),(7,77,56,144),(8,78,57,145),(9,79,58,146),(10,80,59,147),(11,61,60,148),(12,62,41,149),(13,63,42,150),(14,64,43,151),(15,65,44,152),(16,66,45,153),(17,67,46,154),(18,68,47,155),(19,69,48,156),(20,70,49,157),(21,137,112,81),(22,138,113,82),(23,139,114,83),(24,140,115,84),(25,121,116,85),(26,122,117,86),(27,123,118,87),(28,124,119,88),(29,125,120,89),(30,126,101,90),(31,127,102,91),(32,128,103,92),(33,129,104,93),(34,130,105,94),(35,131,106,95),(36,132,107,96),(37,133,108,97),(38,134,109,98),(39,135,110,99),(40,136,111,100)], [(1,37,11,27),(2,119,12,109),(3,39,13,29),(4,101,14,111),(5,21,15,31),(6,103,16,113),(7,23,17,33),(8,105,18,115),(9,25,19,35),(10,107,20,117),(22,55,32,45),(24,57,34,47),(26,59,36,49),(28,41,38,51),(30,43,40,53),(42,120,52,110),(44,102,54,112),(46,104,56,114),(48,106,58,116),(50,108,60,118),(61,123,71,133),(62,98,72,88),(63,125,73,135),(64,100,74,90),(65,127,75,137),(66,82,76,92),(67,129,77,139),(68,84,78,94),(69,131,79,121),(70,86,80,96),(81,152,91,142),(83,154,93,144),(85,156,95,146),(87,158,97,148),(89,160,99,150),(122,147,132,157),(124,149,134,159),(126,151,136,141),(128,153,138,143),(130,155,140,145)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,36),(2,25),(3,34),(4,23),(5,32),(6,21),(7,30),(8,39),(9,28),(10,37),(11,26),(12,35),(13,24),(14,33),(15,22),(16,31),(17,40),(18,29),(19,38),(20,27),(41,106),(42,115),(43,104),(44,113),(45,102),(46,111),(47,120),(48,109),(49,118),(50,107),(51,116),(52,105),(53,114),(54,103),(55,112),(56,101),(57,110),(58,119),(59,108),(60,117),(61,132),(62,121),(63,130),(64,139),(65,128),(66,137),(67,126),(68,135),(69,124),(70,133),(71,122),(72,131),(73,140),(74,129),(75,138),(76,127),(77,136),(78,125),(79,134),(80,123),(81,153),(82,142),(83,151),(84,160),(85,149),(86,158),(87,147),(88,156),(89,145),(90,154),(91,143),(92,152),(93,141),(94,150),(95,159),(96,148),(97,157),(98,146),(99,155),(100,144)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
000100
0040000
0000320
0000032
,
100000
010000
0032000
0003200
0000400
0000181
,
160000
3560000
009000
000900
000045
00003837
,
100000
35400000
0040000
000100
00003736
000034

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,18,0,0,0,0,0,1],[1,35,0,0,0,0,6,6,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,4,38,0,0,0,0,5,37],[1,35,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,37,3,0,0,0,0,36,4] >;

65 conjugacy classes

class 1 2A2B2C2D2E4A···4H4I4J4K4L4M4N4O4P4Q4R4S5A5B10A···10F20A···20H20I···20AF
order1222224···4444444444445510···1020···2020···20
size111120202···24441010101020202020222···22···24···4

65 irreducible representations

dim1111111111112222222444
type++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10C4○D202- (1+4)Q8.10D10D5×C4○D4
kernelC42.122D10C4×Dic10C42⋊D5C4.D20C422D5Dic53Q8D208C4D10⋊Q8C4⋊C4⋊D5Dic5⋊Q8C20.23D4Q8×C20C4×Q8Dic5C20C42C4⋊C4C2×Q8C4C10C2C2
# reps11212112211124466216144

In GAP, Magma, Sage, TeX

C_4^2._{122}D_{10}
% in TeX

G:=Group("C4^2.122D10");
// GroupNames label

G:=SmallGroup(320,1240);
// by ID

G=gap.SmallGroup(320,1240);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,232,758,100,794,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^10=b^2,a*b=b*a,a*c=c*a,d*a*d=a*b^2,c*b*c^-1=d*b*d=a^2*b^-1,d*c*d=c^9>;
// generators/relations

׿
×
𝔽